2.2 Números imaginarios puros, la unidad imaginaria

El número 1 es la unidad en los números reales, y en forma compleja se escribe como (1,0). Esto quiere decir que construimos los demás números reales a partir de éste. De la misma forma si consideramos el conjunto formado por los números imaginarios puros tendremos que todos los números se construyen a partir del (0,1). Sería lógico pues, llamar unidad imaginaria a este número. A esta unidad imaginaria la llamaremos i.

Veamos una propiedad fundamental de i:

i2 = (0,1)·(0,1) = (0-1,0+0) = (-1,0) = -1

de donde i

Con esta propiedad ya tenemos resuelto el problema de las raíces cuadradas de números negativos, veamos como:

Observación

Si nos fijamos en el ejemplo veremos que el producto de un número imaginario puro por uno real es otro imaginario puro.

Ejemplo 4

AnteriorSiguiente