3.4 Exploración gráfica de funciones con irregularidades.

Como en la subsección anterior se puede utilizar la creación de gráficos de puntos partiendo de distintas tablas de valores de una función para explorar los puntos en los que muestra irregularidades como discontinuidades, puntos de no diferenciabilidad , asíntotas verticales, asíntotas horizontales, etc. Esta exploración debe realizarse en general tomando valores en un intervalo que interese estudiar, para ir construyendo otras tablas de valores en intervalos cada vez más finos y centrados en los puntos que se van vislumbrando con anomalías, con el objetivo de ver el comportamiento en esos puntos.

3.4.1 Ejemplo: Estudio gráfico de .

Como la tangente está definida en casi todo los números reales, comenzamos generando una tabla de valores en un intervalo grande como [-4,4], como se puede apreciar en la tabla 7. Al apreciarse puntos con posibles anomalías en la ilustración 5, vamos tomando intervalos cada vez más pequeños y con puntos más juntos para descubrir el comportamiento en proximidades del punto 1.57; como se ve en las dos últimas columna de la misma tabla y en la ilustración 6.

.

 

x

tgx

x

tgx

-4

-1,15782128

-1,4

-5,79788372

-3,5

-0,37458564

-1,2

-2,57215162

-3

0,14254654

-1

-1,55740772

-2,5

0,7470223

-0,8

-1,02963856

-2

2,18503986

-0,6

-0,68413681

-1,5

-14,1014199

-0,4

-0,42279322

-1

-1,55740772

-0,2

-0,20271004

-0,5

-0,54630249

0

0

0

0

0,2

0,20271004

0,5

0,54630249

0,4

0,42279322

1

1,55740772

0,6

0,68413681

1,5

14,1014199

0,8

1,02963856

2

-2,18503986

1

1,55740772

2,5

-0,7470223

1,2

2,57215162

3

-0,14254654

1,4

5,79788372

3,5

0,37458564

4

1,15782128

4,5

4,63733205

 

Tabla 7

 

 

Ilustración 5

 

 

 

Ilustración 6

 

Página anterior Inicio página actual Página siguiente