Espacio Muestral

La Estadística, y por tanto el Cálculo de Probabilidades, se ocupan de los denominados fenómenos o experimentos aleatorios.

El conjunto de todos los resultados posibles diferentes de un determinado experimento aleatorio se denomina Espacio Muestral asociado a dicho experimento y se suele representar por Ω. A los elementos de Ω se les denomina sucesos elementales.

Así por ejemplo, el espacio muestral asociado al experimento aleatorio consistente en el lanzamiento de una moneda es Ω= {Cara, Cruz}; el espacio muestral asociado al lanzamiento de un dado es Ω={1, 2, 3, 4, 5, 6}, siendo Cara y Cruz los sucesos elementales asociados al primer experimento aleatorio y 1, 2, 3, 4, 5 y 6 los seis sucesos elementales del segundo experimento aleatorio.

A pesar de la interpretación que tiene el espacio muestral, no es más que un conjunto abstracto de puntos (los sucesos elementales), por lo que el lenguaje, los conceptos y propiedades de la teoría de conjuntos constituyen un contexto natural en el que desarrollar el Cálculo de Probabilidades.

Sea A el conjunto de las partes de , es decir, el conjunto de todos los subconjuntos de Ω. En principio, cualquier elemento de A, es decir, cualquier subconjunto del espacio muestral contendrá una cierta incertidumbre, por lo que trataremos de asignarle un número entre 0 y 1 como medida de su incertidumbre. En Cálculo de Probabilidades dichos subconjuntos reciben en el nombre de sucesos, siendo la medida de la incertidumbre su probabilidad. La tripleta (Ω,A,P) recibe el nombre de espacio probabilístico.

Por tanto, asociado a todo experimento aleatorio existen tres conjuntos: El espacio muestral , la clase de los sucesos, es decir, el conjunto de los elementos con incertidumbre asociados a nuestro experimento aleatorio A, y una función real, P:A[0, l], la cual asignará a cada suceso (elemento de A) un número entre cero y uno como medida de su incertidumbre.

Advertimos no obstante, que la elección del espacio muestral asociado a un experimento aleatorio no tiene por qué ser única, sino que dependerá de que sucesos elementales queramos considerar como distintos y del problema de la asignación de la probabilidad sobre esos sucesos elementales.

 Ejemplo: : "Urna"

Consideremos el experimento aleatorio consistente en extraer una bola al azar de una urna compuesta por tres bolas rojas, dos blancas y una verde.

Podemos considerar como espacio muestral

Ω1= {ω1, ω2, ω3}

en donde sea ω1 = bola roja, ω2= bola blanca y ω3 = bola verde, aunque también podíamos haber considerado como espacio muestral el conjunto

Ω1= {ω1, ω2, ω3, ω4, ω5, ω6}

en donde ωi = bola roja, i = 1,2,3, ωi = bola blanca, i= 4,5 y ω6= bola verde, haciendo las bolas distinguibles.

Ambos pueden ser considerados espacios muéstrales del experimento descrito, eligiendo el que más nos convenga, por ejemplo, a la hora de asignar la probabilidad a los sucesos elementales de uno u otro espacio muestral.


Respecto a la clase de los sucesos A, es natural que ésta tenga una estructura tal que permita hablar no solo de sucesos sino también de su unión, intersección, diferencia, complementario, etc., debiendo ser la clase A, en consecuencia, cerrada a dichas operaciones entre "conjuntos" (entre sucesos). Esta es la situación del conjunto de las partes cuando es finito o inclusive numerable (caso, por ejemplo, del espacio muestral asociado al experimento aleatorio consistente en lanzar una moneda hasta que salga cara por primera vez). En otras ocasiones en las que sea un conjunto continuo (por ejemplo, cuando estudiamos el tiempo que tarda un isótopo radioactiva en volverse inestable), deberá ser A un conjunto estrictamente más pequeño que el conjunto de las partes de Ω.

En todo caso podemos pensar en A como en el conjunto que contiene todos los elementos de interés, es decir, todos los sucesos a los que les corresponde una probabilidad.

Apuntemos además algunas peculiaridades del Cálculo de Probabilidades respecto a la teoría de conjuntos. Aquí, el conjunto vacio 0 recibe el nombre de suceso imposible, definido como aquel subconjunto de que no contiene ningún suceso elemental y que corresponde a la idea de aquel suceso que no puede ocurrir.

De forma análoga, el espacio total recibe el nombre de suceso seguro al recoger dicha denominación la idea que representa.

Llamaremos sucesos incompatibles a aquellos cuya intersección sea el suceso imposible.

Por último, digamos que la inclusión de sucesos, A B, se interpreta aquí como que siempre que se cumpla el suceso A se cumple el B; por ejemplo, siempre que salga el 2 (suceso A) sale par (suceso B).

 Ejemplo: "Lanzamiento de un dado"

El espacio probabilístico asociado al experimento aleatorio consistente en el lanzamiento de un dado, tendrá como espacio muestras Ω={1,2,3,4,5,6} y como espacio de sucesos el conjunto de las partes por ser Ω finito, el cual contiene 26 elementos,

A = { Φ, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, {1,4}, {1,5}, {1,6}, {2,3}, {2,4}, {2,5}, {2,6}, {3,4}, {3,5}, {3,6}, {4,5}, {4,6}, {5,6}, {1,2,3}, {1,2,4}, {1,2,5}, {1,2,6}, {1,3,4}, {1,3,5}, {1,3,6}, {1,4,5}, {1,4,6}, {1,5,6}, {2,3,4}, {2,3,5}, {2,3,6}, {2,4,5}, {2,4,6}, {2,5,6}, {3,4,5}, {3,4,6}, {3,5,6}, {4,5,6}, {1,2,3,4}, {1,2,3,5}, {1,2,3,6}, {1,2,4,5}, {1,2,4,6}, {1.,2,5,6}, {1,3,4,5}, {1,3,4,6}, {1,3,5,6}, {1,4,5,6}, {2,3,4,5}, {2,3,4,6}, {2,3,5,6}, {2,4,5,6}, {3,4,5,6}, {1,2,3,4,5}, {1,2,3,4,6}, {1,2,3,5,6}, {1,2,4,5,6}, {1,3,4,5,6}, {2, 3, 4, 5, 6}, Ω }.

Obsérvese que este conjunto contiene los sucesos sobre los que habitualmente se tiene incertidumbre, como por ejemplo que salga un número par, {2,4,6}, o un número mayor que cuatro, {5,6}, o simplemente que salga un seis, {6}, y que como se ve es cerrado respecto de las operaciones entre conjuntos.

El último elemento del espacio probabilístico es la probabilidad, que como antes dijimos está definida sobre A, asignando a cada suceso un número entre 0 y 1. Este es el objetivo de la siguiente sección.


[Página Anterior]
[Página Inicial]
[Página Siguiente]